skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zaidi, Syed Shoaib Hassan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The remarkable surge in energy demand has compelled the quest for high‐energy‐density battery systems. The Li–O2battery (LOB) and Li–air battery (LAB), owing to their extremely high theoretical energy density, have attracted extensive research in the past two decades. The commercial development of LOB is hampered due to the numerous challenges its components present. Ionic liquids (ILs) are considered potential electrolyte solvents of LOBs and LABs due to their excellent electrochemical stability, thermal stability, non‐flammability, low flammability, and O2solubility. In addition to electrolyte solvents, ILs also have other applications in LOB and LAB systems. This review reports the progress of IL‐based LOBs and LABs over the years since treported for the first time in 2005. The impact of the physiochemical properties of ILs on the performance of LOB and LAB at various operating conditions is thoroughly discussed. The various methodologies are also summarized that are employed to tune ILs’ physiochemical properties to render them more favorable for rechargeable lithium batteries. Tunable properties of ILs create the possibility of designing cost‐effective batteries with excellent safety, high energy density and high power density, and long‐term stability. 
    more » « less